Rogers–Ramanujan type identities for alternating knots

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rogers-ramanujan Type Identities for Alternating Knots

We highlight the role of q-series techniques in proving identities arising from knot theory. In particular, we prove Rogers-Ramanujan type identities for alternating knots as conjectured by Garoufalidis, Lê and Zagier.

متن کامل

Alternating Quadrisecants of Knots

It is known [Pann, Kup] that for every knotted curve in space, there is a line intersecting it in four places, a quadrisecant. Comparing the order of the four points along the line and the knot we can distinguish three types of quadrisecants; the alternating ones have the most relevance for the geometry of a knot. I show that every (nontrivial, tame) knot in R has an alternating quadrisecant. T...

متن کامل

Construction of Non-alternating Knots

We investigate the behaviour of Rasmussen’s invariant s under the sharp operation on knots and obtain a lower bound for the sharp unknotting number. This bound leads us to an interesting move that transforms arbitrary knots into non-alternating knots.

متن کامل

Cusp Volumes of Alternating Knots

We show that the cusp volume of a hyperbolic alternating knot can be bounded above and below in terms of the twist number of an alternating diagram of the knot. This leads to diagrammatic estimates on lengths of slopes, and has some applications to Dehn surgery. Another consequence is that there is a universal lower bound on the cusp density of hyperbolic alternating knots.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2016

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2015.02.002